If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-36x-144=0
a = 10; b = -36; c = -144;
Δ = b2-4ac
Δ = -362-4·10·(-144)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-84}{2*10}=\frac{-48}{20} =-2+2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+84}{2*10}=\frac{120}{20} =6 $
| -4k+3=-9-7 | | .7=10m | | -4y-26=-y | | x/0.6=120 | | 24/4=x/12 | | x-2-20=-7 | | 878=26q-84 | | -5g+10=6g | | 10h=400 | | 10-0.1x=-0.2x+8 | | x+16+62+3x-22=180 | | -2+6x=6+5.5x | | 45x-3=21 | | -2x^2-13x-18=0 | | 5m+6=24 | | 40+3x=6 | | 7(r+10)=91 | | 10(x-2)-(13x-17)=11(x-1)+2x(-8)= | | Y=75+15x | | 32=2(10-x)+2(3x+10) | | (2/3)4^(x-5)=46 | | 8(y-85)=56 | | 7/12x+6=20 | | 2x^2+15x+35=0 | | -6.8+3y+2.4=4.3+3y | | (2/3)4^x-5=46 | | 2x-4-6x=-12 | | 11a=-24+2 | | 2/3(4)^x-5=46 | | 7x+18=49 | | 1/8(f)=3 | | 7(h+3)=98 |